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1. Introduction
 Nanoparticles (NPs) have demonstrable utility as catalysts in many avenues of chemical 

production, due to their high energy surfaces and extremely high surface atom to volume ratios.
 Continuous-flow reactors provide a scalable way of manufacturing NP catalysts, with the 

potential for self-optimisation to increase yield, reduce time, environmental & materials cost, 
human requirement and the need for a priori chemical knowledge such as kinetics.

 Machine learning algorithms such as Bayesian Optimisation allow the determination of global 
response curve minima, while minimising the number of experiments required through 
artificially-intelligent decision-making.

 This project explores the benefits of optimising continuous over discrete variables in continuous 
flow synthesis and utilisation of these NP catalysts.

2. Self-Optimisation of Continuous-Flow Chemistry 
 Continuous-flow reactors allow the automation of experiments. When combined with 

algorithmic self-optimisation to generate experimental conditions, this permits the effective 
exploration of  large amounts of experimental space to find local and global optima.

 This is achieved using UV-vis on-line analysis of the generated products that creates a feedback-
loop, using an optimisation algorithm with an “acquisition function” to efficiently choose the 
next conditions to test in order to most quickly reach the “global optimum” within the modelled 
system.

 This has the potential to expedite discovery and enhance research undertaken in synthetic 
laboratories, termed “High-Throughput Experimentation” (HTE).

3. Bayesian Optimisation and System Modelling
 Optimsation is termed “Bayesian” because previous evidence or “priors” are updated with new 

evidence on every iteration to produce a new surrogate model.
 Bayesian optimisation treats a system as a “Gaussian process” where the distribution of possible 

results is dealt with as an infinite array of gaussian functions.
 It uses a mean and covariance function to represent the data in a simplified “surrogate model” 

created from training data about a complex real-life system (such as our continuous-flow reactor).
 Every iteration of the algorithm produces a new surrogate model with a distribution closer to that of 

the true objective function, with the variance representing uncertainty – i.e. greater further from 
the training data.

 This allows the modelling of a real life system from a set of experimentally generated training-data 
which can be used to produce modelled experiments with varied values for the input conditions.

4. Discrete vs. Continuous Variable Optimisation
 The ratio of Au:Ag in the alloyed nanoparticles (synthesised using the Turkevitch protocol) was varied 

and optimised as a continuous variable along with residence time, reduction concentration with the 
objective of obtaining maximum conversion in a test reduction reaction using a Bayesian optimisation 
algorithm. 

 This project will repeat these experiments but exploring the Au:Ag ratio of the NPs as a discrete 
variable with a variety of possible compositions to quantify the pros and cons of each approach.   
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