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2.3 Researchers & Collaborators

Mr. Hongyang Dong, a PhD student at UCL chemistry joined the team during the project.
Hongyang joined us in September 2020 and worked on generative adversarial networks for
reconstruction. hongyang.dong.18@ucl.ac.uk

3 Publicity Summary

X-ray scatter-based tomography allows unprecedented insight into the chemical and physical
state of functional materials and devices. Such tomographies can be used as research tools but
also offer the prospect of routine scanning for security and inspection systems and potential
for medical scanning.

In conventional X-ray tomography, the images that are obtained give maps of density within
the object and the composing pixels contain single grey scale values. In scatter based
tomography, each pixel instead contains spectrum or equivalent chemical signal i.e. a 1D array
(or higher) of numbers. An X-ray scatter tomography slice becomes a data cube with the two
conventional spatial dimensions and a third spectral dimension. Such image data is termed
hyperspectral.

Whilst, hyperspectral tomography can match or even exceed the resolution offered by
conventional X-ray absorption contrast tomography, the latter is more highly optimised and
offers modalities that can generate images in a fraction of the time and dose to image the
same volume. In practice it is often the case that hyperspectral tomography resolution is
sacrificed to accelerate collection time. This project aims to exploit machine learning
approaches to marry hyperspectral chemical tomography with conventional X-ray absorption
tomography to achieve chemical images with the rich information of the former in
combination with the resolution and speed of collection of the latter.

4 Executive Summary

X-ray based scatter tomography are extremely powerful non destructive analytical techniques
that can provide insight into the chemical and physical states of functional materials and
devices even under operating conditions. These approaches have potential for applications
beyond their current use as research tools, but to date this has not been realised, in large
part, due to the long collection times and high dose rates associated with measurement. The
aim in this project was to facilitate shorter data collections that can still yield high resolution
images by using machine learning approaches to obtain super-resolution. To achieve this, we
used the information from the large number of data points within the hyperspectral X-ray
scatter dataset and combined with the traditional conventional X-ray absorption signal which
can be easily and quickly measured. This project has focused on (1) developing and applying
novel AI-based methods for chemical image (volume) reconstruction and (2) enhancing the
spatial resolution of the chemical images.

The approaches reported herein, have been applied to the X-ray diffraction computed
tomography (XRD-CT) technique. The state-of-the-art with this method yields large 3D
volumes, containing many hundreds of thousands or even millions of diffraction patterns.
These are extremely challenging and time consuming to processes and analyse. The continuing
development in instrumentation means that this big data problem is only increasing and
indeed this problem becomes even worse when higher resolution chemical images are obtained.

2



The new machine learning based algorithms that have been developed will semi-automate the
image reconstruction process while the image enhancement allows the collection of less data to
achieve the same resolution (both cases falling under the big data handling umbrella). These
new reconstruction and image enhancement approaches are immediately beneficial in terms of
advancing these techniques and offering the prospect of translation beyond their use as
research tools. Of great value should be the baseline model and a benchmark dataset that we
have made publicly available, which can stimulate research across the community.

5 Aims and Objectives

We aim to develop generally applicable, freely available tools for using machine learning in
X-ray computed tomography. Specifically we will develop:

• Open datasets for testing tomographic reconstruction and super-resolution approaches

• A benchmark baseline for tomographic reconstruction with neural networks

• A benchmark baseline for super-resolution enhancement of XRD-CT images using neural
networks

• A documented, open-source repository for these tools and data

Our overarching aim was to accelerate machine learning application in XRD-CT by providing
examples, baselines and test datasets.

6 Methodology

6.1 Scientific Methodology

The first part of the project focused on creating training libraries for the neural networks. To
avoid bias, we have created libraries based on: (1) synthetic data containing random shapes
using the well-known scikit-image python package, (2) the DIV2K dataset: DIVerse 2K
resolution high quality images as used for the challenges @ NTIRE (CVPR 2017 and CVPR
2018) and @ PIRM (ECCV 2018) and (3) images reconstructed from previously acquired
micro-CT and XRD-CT experimental datasets. For the experimental tomographic datasets,
the sinograms were first centered, scaled (i.e. assuming equal summed intensity per
tomographic angle), background was subtracted (e.g. air scattering for the XRD-CT data)
and then the images were reconstructing with the filtered back projection algorithm setting all
negative values to zero. Specifically for the XRD-CT datasets, appropriate filters (i.e.
trimmed mean filter) were applied to the raw 2D diffraction images during radial integration
to avoid the formation of hotspots in the sinograms. These processed images are considered to
be the ground truth for these libraries. Where needed, these images were rescaled to lower
resolution using bilinear interpolation and artificial sinograms were created using the astra
toolbox in python. The performance of the reconstruction models is evaluated by comparing
the reconstruction results of these sinograms with the ones obtained using the filtered back
projection (i.e. reconstruction of synthetic sinograms). Similarly, for the super-resolution, the
performance of the CNNs will be evaluated using the aforementioned three libraries.

3



6.2 AI Methodology

We used a mixed architecture for CNN reconstruction. It starts with four 2D convolutional
layers whose strides are equal to 2, followed by four fully connected layers. Then the 1D
output from the last fully connected layer is transformed back to a 2D image and then sent to
the next three 2D convolutional layers whose strides are equal to 1. For fully connected layers,
there are 1000 nodes inside each of the first three of them, and the last fully connected layer
has the size equal to the number of pixels of the reconstructed image. Besides, there is also
one dropout layer after each fully connected layer to avoid overfitting.

The accuracy and quality of the reconstructed images can be improved by increasing the
number of nodes in the first three dense layers, but those numbers are significantly restricted
by the computing resources. Increasing the number of nodes inside each layer can lead to a
dramatic increase of the trainable weights, which makes the model harder to fit. Therefore, we
added four more convolutional layers afterwards. The convolutional layers have significantly
fewer weights than dense layers. They are used to take out the best-fitting features of the
images and refine the reconstruction.

For the super-resolution, we are planning first to implement and evaluate the performance of
the EDSR, WDSR and SRGAN neural networks using the aforementioned three libraries
containing different types of image data. The next step will involve exploring their
performance for upscaling micro-CT and for the first time, XRD-CT data. Finally, new
architectures will be explored specifically for the XRD-CT data using a dual input of low
resolution XRD-CT images and a high resolution micro-CT image acquired at the same
position (i.e. XRD-CT and micro-CT corresponding at the same sample cross-section).

7 Results

a. Libraries
We have made a publicly available set of libraries for training and testing tomographic
reconstruction and X-ray image super-resolution techniques. There is one library of 180,000
sinogram image pairs for reconstruction. As described above there are also several libraries of
experimental micro-CT and XRD-CT data at different resolutions (for the same data), which
can be used to train and test super-resolution methods. The links and details of the libraries
can be found on the project documentation pages:
https://superres-tomo.readthedocs.io/en/latest/benchmark_data.html.

b. CNN for reconstruction
For the purpose of this project, we have decided to use the currently latest stable version of
Tensorflow (v.2.2.0) in python for the development and testing of the neural networks. We
designed, implemented and evaluated a large number of CNN architectures, exploring also the
impact of various hyperparameters (e.g. learning rate) and loss functions. A representation of
the CNN reconstruction architecture is shown in Figure 1.
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Figure 1: A representation of the CNN reconstruction architecture. The green blocks
represent convolutional layers, the orange blocks represent fully connected layers.

From the various performance tests, we found the cnn reconstruct discussed in the 6b section
as one of the most promising ones, especially due to its ability for upscaling (i.e. it can handle
relatively large images while maintaining a number of parameters in the order of 107 - 108).
The learning rate was set to 0.00025 and the root mean squared was used as the loss function.
We created a library using a combination of experimental XRD-CT datasets using catalyst
particles consisting of 8,000 pairs of sinograms-images. Some examples are shown in Figure 2
where the original image and the ones obtained from the reconstruction using the filtered back
projection algorithm and the cnn respectively are presented.

Figure 2: Performance of the reconstruction CNN and its comparison with the results
obtained with the filtered back projection algorithm using a library containing XRD-CT

sinograms-images.

It can be seen here that the performance of the cnn reconstruct is superior to the conventional
filtered back projection algorithm as it can correctly reconstruct the shape and intensity of the
catalyst particles while at the same time suppressing the background noise. However, when
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the same CNN was tested using the library containing random shapes (55,000 pairs of
sinograms-images), the performance was worse. These results are presented in Figure 3.

It can be seen that the filtered back projection algorithm can retain the sharp edges of the
shapes and their overall shape while the reconstruction CNN fails to do so. The problem here
arises from the training data as the various shape images can vary significantly in content
while there is a high degree of correlation between the XRD-CT images (i.e. the XRD-CT
images present in each XRD-CT dataset). These results are very important as they illustrate
the strong dependence of the reconstruction CNN on the training data and the difficulty in
creating a reconstruction CNN that can handle very different data (i.e. images that are not
well correlated with the training data). This major issue is rarely discussed in literature and
the current results from this project show that there should be more discussion on the impact
and nature of training data used in supervised learning reconstruction CNNs. As an example,
in literature one can often encounter CNNs used in medical imaging (reconstruction, denoising
etc) claimed to exhibit superior performance compared to conventional methods but the CNNs
have been trained using only training libraries containing medical CT for a body part/organ.

Figure 3: Performance of the reconstruction CNN and its comparison with the results
obtained with the filtered back projection algorithm using a library containing synthetic

sinograms-images of random shapes.

c. CNN transferability
We decided to explore further the transferability of the supervised-learning reconstruction
CNNs by examining four X-ray diffraction computed tomography (XRD-CT) training datasets
and performing t-SNE analysis of these datasets. Specifically, two experimental and two
simulated XRD-CT datasets were used in this work. The cnn reconstruct was trained using
each dataset and was then used to reconstruct the tomographic images. As shown in Figure 4,
the performance of the CNN strongly depends on the type of data it has experienced during
training.
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Figure 4: Representative examples of reconstructed images using CNNs trained on different
data sets. The columns represent the different training sets used for the CNN, as well as

ground truth and FBP results, and the rows represent the different test examples presented to
the CNN.

We then combined the various libraries and trained the reconstruction CNN using this combined
library. As shown in Figure 5, the CNN is now able to reconstruct accurately the images
provided from different sources. We have performed a thorough investigation including t-SNE
analysis and we are currently preparing a manuscript for submission to a peer reviewed journal.

Figure 5: Representative examples of reconstructed images using CNNs trained on mixed data
sets. The columns represent the different size training sets used for the CNN, as well as

ground truth and FBP results, and the rows represent the different test examples presented to
the CNN.
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d. Generative Adversarial Network for reconstruction
Initially in the proposed work plan we had intended to test the recently developed Mixed
Scale Dense Networks (https://doi.org/10.1073/pnas.1715832114) for both image
reconstruction and super-resolution. However when we further explored the architecture and
its implementation, it has become apparent that the MSDN is restricted to inputs and
outputs with exactly the same dimensions. This makes reconstruction impossible and limits
its application for reconstruction and super-resolution. As a result we decided to concentrate
our efforts on CNNs and Generative Adversarial Networks (GANs). We implemented an
unsupervised machine learning approach for image reconstruction using a GAN inspired by
the recently published GANrec which eliminates the bias caused by the nature of the training
data in supervised learning approaches.

A schematic representation of the GAN is presented in Figure 6. The first step involves a
coarse tomographic image reconstruction which is performed external to the CNN using for
example the conventional filtered back-projection algorithm. The resultant image is then
passed to the Generator CNN of the GAN and the resulting image is forward-projected using
the radon transform to yield a sinogram. This simulated sinogram is then passed to the
Discriminator CNN which compares it to the experimental sinogram. The Discriminator CNN
is trained to understand whether the simulated sinogram is real or fake (i.e. matching the
experimental sinogram or not). At the end of every iteration, the weights of both the
Discriminator and Generator CNNs are updated. We have worked on optimizing the
architecture of both the Generator and Discriminator CNNs, minimizing the number of
parameters (i.e. width and depth of the neural networks). The optimised GAN architecture
has high accuracy, is scalable (sinogram/image size) and as shown in Figure 7 does not suffer
from transferability issues (i.e. can handle sinograms/images from different sources).

Figure 6: Illustration of the GAN model used for tomographic image reconstruction.
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Figure 7: Comparison between reconstructed images using the filtered back-projection
algorithm (middle) and the GAN (right).

e. Resnet for Super-resolution
We have explored various models and approaches for a super-resolution neural network and have
developed a new architecture employing multiple blocks of Residual Networks (RNs). This new
architecture, that we call Chemical Image Super-resolution Network (ChemISR-Net), uses a
dual input consisting of a low resolution chemical tomography image and a high resolution
absorption-contrast image to yield a high resolution chemical tomography image. A schematic
representation of the ChemISR-Net is presented in Figure 8.

Figure 8: Schematic representation of the ChemISR-Net used for Super-resolution of chemical
(hyperspectral) images using a dual input.

The ChemISR-Net contains only convolutional layers (i.e. no dense layers), which keeps the
number of parameters low making it scalable and possible to train without the need of a ultra
high spec workstation PC. Apart from simulated data, we evaluated the performance of the
ChemISR-Net using experimental XRD-CT data we have collected using commercial cylindrical
AAA Li-ion LCO batteries. We first performed Rietveld analysis of the XRD-CT data to yield
maps corresponding to the concentration (scale factors) and weight fraction of each crystalline
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component present in the cells. These maps were then used to calculate X-ray absorption-
contrast tomographic images from the XRD-CT data. A comparison of a calculated image and
a previously acquired experimental micro-CT of the same type AAA Li-ion LCO battery is
shown in Figure 9. It can be clearly seen that our calculated image resembles very accurately
the experimental micro-CT images.

Figure 9: Left: Experimental micro-CT image of a commercial cylindrical AAA Li-ion LCO
battery cell. Right: Calculated micro-CT image using experimental XRD-CT data collected

from the same type of cell.

We downsampled the XRD-CT images by a factor of 4 (images of 520x520 to 130x130 pixels) and
trained the ChemISR-Net using these images and the calculated high resolution micro-CT image
as inputs. The trained network was then applied to a different experimental XRD-CT dataset
from another battery cell. As shown in Figure 10, the ChemISR-Net yields very promising
results, far superior to the conventional bilinear interpolation method. For comparison, we
tested the ChemISR-Net against a single input RN architecture (i.e. equivalent to the bottom
part of Figure) and it still outperforms it significantly (mean squared error of 0.0510 and 0.0395
for the single and dual input networks respectively).

Figure 10: Comparison of the upscaled images obtained using bilinear interpolation (bottom
left) and the ChemISR-Net from an XRD-CT image that corresponds to the separator of the

Li-ion cell (top left: downsampled image, top right: ground truth image).

10



8 Outputs

We have collected the outputs from the project in a repository, hosted on GitHub. We have
also been building documentation to describe the outputs of the project, as well as an API,
with extensive tutorials to allow others to use the tools and the data resulting from the
project. The documentation can be found at
https:/superres-tomo.readthedocs.io/en/latest/about.html and the code repository at
https://github.com/keeeto/super-resolution-ml

a. Libraries
The data libraries are stored in hdf5 format, to facilitate easy and efficient use in machine
learning projects. The library locations and details are documented in the project docs at:
https://superres-tomo.readthedocs.io/en/latest/benchmark_data.html

b. Networks
We have developed networks for image reconstruction (CNN and GAN), segmentation, denoising
and super-resolution. We have packaged the first three together in a consistent fashion in our
GitHub repository (https://github.com/keeeto/super-resolution-ml) to ensure that the
code can be used by others. We have also written extensive tutorials to demonstrate how to
train and apply the networks for these different tasks:

• Reconstruction with a CNN: https://superres-tomo.readthedocs.io/en/latest/tu
torials.html#reconstruction-with-a-cnn

• Reconstruction with a dense network: https://superres-tomo.readthedocs.io/en/l

atest/tutorials.html#reconstruction-with-a-dense-network

• Segmentation ’urlhttps://superres-
tomo.readthedocs.io/en/latest/tutorials.html#segmentation-of-x-ray-images

• Denoising https://superres-tomo.readthedocs.io/en/latest/tutorials.html#den

oising-of-x-ray-images

• The t-SNE will be added to the public repository after publication

• The ChemISR-Net will be added to the public repository after publication

c. Manuscripts
We have prepared a manuscript based on our analysis regarding the bias introduced by the
type of training data used in supervised learning CNNs for tomographic image reconstruction.
This has been submitted to the journal Machine Learning Science and Technology and is
currently in second round of review.
We are also planning to prepare a manuscript for our super-resolution architecture
We will also hopefully contribute to a book chapter in machine learning approaches used in
computed tomography

d. Presentations
The work has been or will be presented at:

• AI3SD Winter Series Seminars

• Invited talk at the MRS conference 2020

• Poster at the MC15 conference 2021
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• Invited talk at Berkeley Lab workshop on autonomous materials discovery

• nvited talk at MRS Fall 2021

• Invited talk at MRS Fall 2021

9 Conclusions

In this project we explored and developed neural networks for reconstruction and enhancing
X-ray diffraction computed tomography (XRD-CT) images. We found initially that näıve
application of convolutional neural networks in a supervised learning approach can suffer
seriously from training set bias – this is a finding seldom discussed in the many papers on this
topic that are published. We explored and developed two routes to avoiding this bias (i)
ensuring balanced datasets, which can be assessed using manifold learning to identify data
clusters and ensure that new examples passed to the network are from within the distribution
used for training the network; (ii) an unsupervised approach using generative adversarial
networks. Both of our approaches provide reliable, scalable approaches for using deep learning
to reconstruct XRD-CT data. We developed and employed a new network for enhancing
resolution of XRD-CT images by fusing information from higher-resolution (but lower
chemical information) micro-CT images. The super-resolution network greatly out-performs
traditional image upscaling approaches and provides a route to significant advances in the
spatial resolution of XRD-CT.

10 Future Plans

We are going to produce further public datasets for image reconstruction. Additionally, we are
writing automated testing for the GitHub repository to ensure the stability of the code. We
will continue to publish, document and test the new models and methods that we develop
from the project. We are currently in discussions about incorporating our code with the
popular existing Xlearn Tomography code (https://xlearn.readthedocs.io/en/latest/) -
this will ensure long term support for the tools.

We have also secured funding from Innovate UK to work on projects arising from this work
and we are applying for funding from STFC to continue the Super-resolution work to blend
neutron and X-ray tomography experiments.

11 References
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12 Data & Software Links

We developed a new open-source software resource for using deep learning for tomographic
reconstruction and image processing. The code is fully documented and automatically tested to
ensure usability and reliability. We have also made all of our datasets available as a community
resource for testing our models and other models.

• Documentation: https://superres-tomo.readthedocs.io/en/latest/about.html

• Code: https:/github.com/keeeto/super_tomo_py
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• Datasets: https://superres-tomo.readthedocs.io/en/latest/benchmark_data.htm

l
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