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3 Publicity Summary

Access to clean drinking water for all is part of the UN sustainable development goals and the
desalination of sea water is a likely candidate for achieving this. The aim of this project was to
establish an integrated discovery pipeline for developing new materials for water desalination.
This was partially achieved by creating a software pipeline that generates a large dataset of
ultrathin membrane materials and applying artificial intelligence (AI) design paradigms to begin
to predict the ideal materials for this application. The consumables required for synthesising
and testing the membranes, once their prediction has been refined, have also been obtained and
will allow for a closed-loop approach to materials design.

4 Executive Summary

AI has the potential to act as a smart navigation system in the quest for new functional mater-
ials that hold the key to solving societal problems, but obtaining large data sets encapsulating
chemical information in a way computer algorithms can understand is a significant challenge.
This project has explored the use of AI generative design to predict new 2D materials for desal-
ination, building towards an eventual goal of integrated discovery where experimental results
are used to refine AI predictions. By creating a pipeline that combines existing open software
packages and tools with our own code, we are able to quickly and efficiently construct a large
database of hypothetical desalination membranes, including a unique string-based representa-
tion for each structure that can be used in machine learning / AI algorithms. We also develop
an AI generative model for the prediction of new membrane materials, which learns from this
data set and has already picked up many of the important features for a valid membrane struc-
ture. We further outline how the database can be easily extended in a semi-automated fashion,
how the AI predictions may be improved in future work, and how these predictions will be syn-
thesised and tested. Once the generative model predicts materials that prove to be effective for
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desalination, this would make a strong case for further investment from bodies such as EPSRC
towards an automated, integrated discovery pipeline for 2D materials.

5 Aims and Objectives

Over 1.2 billion people around the world currently lack access to safe drinking water, a number
the World Water Council estimate will rise to 3.9 billion in coming decades as a result of
continued industrialisation and climate change. Three quarters of the Earth’s surface is covered
in water, but current desalination technology is prohibitively expensive and energy intensive.
Two-dimensional materials, in particular metal-organic nanosheets (MONs), have shown great
potential for creating a new generation of ultrathin membranes with exceptionally high flux
rates and selectivity for desalination. The overall goal of the research project was to discover
metal-organic nanosheets for desalination using a combination of AI methods and experimental
validation. This was sub-divided into the following aims:

• Use generative AI methods for the inverse design of MONs with ideal properties for
desalination and exfoliation.
STATUS: The groundwork has been laid for the generative design of new MONs. With
the pipeline and AI generative model developed in this work, future research should be
able to build on and utilise the programs and scripts provided to generate new materials.

• Produce a sustainable software pipeline/framework that can be adapted for the inverse
design of other 2D materials.
STATUS: We have developed a full pipeline for data generation: from the initial selection
of building blocks to the generation of a database of 2D materials, and through to the
training of a sequence to sequence generative algorithm.

• Establish an effective collaboration across the interdisciplinary research team.
STATUS: Despite the Covid-19 pandemic the research team have worked well together
and are in a position to continue collaborating on integrated discovery of 2D materials.

• Obtain preliminary experimental results that will act as a springboard for larger research
proposals targeting closed-loop 2D materials discovery.
STATUS: The experimental team have purchased the required consumables and are
ready to synthesise and test new AI generated MONs and evaluate them in separation
applications in order to validate the AI membrane design.

6 Methodology

6.1 Scientific Methodology

To train AI models a large dataset is typically required to achieve reasonable results. However,
for 2D materials there is insufficient experimental data for training a generative model – by
their very nature 2D nanomaterials are poorly crystalline and hence difficult to characterise. In
this work we have adopted a “synthetic data” approach, in which a computer algorithm is used
to construct the dataset.

To generate these new MONs we build them up from their composite “building blocks”:
the topological net, giving the overall shape and symmetry of the crystal; the nodes, commonly
organometallic structures; and the edges, organic links between each node. Figure 1 shows
two options for the node and edge building blocks. In one case we can choose to break the
structure down into building blocks based upon chemical intuition and synthesis, which would
result in four points of connection in coordination. Or we can break the structure along the
carbon-carbon bond resulting in only two points of connection and simplifying the generative
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Figure 1: Two options for breaking the overall structure down into building blocks. The left
shows the structure being broken along the two oxygen-metal bonds (highlighted in yellow)

leading to four points of coordination, which matches how the structure would be synthesised
experimentally. The right shows the structure being broken along the carbon-carbon bond

(highlighted in yellow) leading to two points of coordination. Using the option on the right for
constructing building blocks simplifies the computational problem.

process. This is a common method of describing 3D metal-organic frameworks (MOFs), and
these extended node building blocks are typically referred to as secondary building units (SBUs).

After defining a large number of these relevant building blocks, the construction of the
nanosheets from these blocks is automated using the Topologically Based Crystal Constructor
(ToBaCCo) code, [1,2] which was originally designed for MOFs. The resulting large set of hy-
pothetical nanosheets can then be evaluated in terms of relevant properties such as pore size,
before the data set is used to train generative AI methods.

6.2 AI Methodology

Two of the most popular generative models are: the generative adversarial network (GAN)
which learns through the competitive training of two networks, a generator and a discriminator;
and the variational autoencoder (VAE) which generates a probability space to describe the
dataset. This project uses a variational autoencoder due to its recent successful application to
nanoporous crystalline reticular materials. [3]

Variational autoencoders are composed of an encoder and a decoder. The encoder takes an
input, x, and generates two values in a latent space, µx and σx. Points, z, are randomly sampled
from a latent normal distribution that is expected to generate the data and a decoder network
regenerates the input data x. To train a VAE on character string sequences we have implemented
a long short-term memory recurrent neural network (LSTM) as part of the encoding process. [4]

This allows us to maintain information about the string structure in the encoding process.
We have generated a unique string-based identifier, known as a MOFid, [5] for each entry

in our dataset, and these will be used to train the LSTM-VAE to discover new MONs. The
network has been implemented in Python, using sustainable software practices and existing
machine learning / AI frameworks.
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7 Results

7.1 Pipeline for a database of hypothetical MONs

The main output of this work is a software pipeline designed for the fast production of a database
of hypothetical MONs. The code and examples can be found in our git repository. The pipeline
can be split up into sections:

• SBU production (nodes).

• Organic linker production (edges).

• Topologically driven MON production (through ToBaCCo).

• Unique ID production (MOFids).

• Structure optimisation and property calculation.

Figure 2 shows the overall structure and data flow throughout the pipeline. This section outlines
the structure and logic behind this pipeline, while subsequent sections will show an example of
this pipeline’s use and the training of an LSTM-VAE with the generated data.

Figure 2: An overview of the full data pipeline, showing data flow and pipeline structure.
Each file type is colour coded to assist with visualising each step in the process and how each
part leads into the next. Red are SMILES strings [6] for backbones provided by the user and

mutated molecules generated through a Python script. Yellow are cml files produced by a 3D
structure program in the case of the SBUs and by a Python script utilising Open Babel for the
edges. Green are ToBaCCo specific cif files produced by a Python script in all cases. Purple
are databases of data linking the cif files to SMILES strings and MOFids. Blue are Python

programs.

SBU production

Due to the complex nature of SBU geometry, specifying their 3D structure manually is preferred
over trying to provide a SMILES string for the structure. Using a 3D structure package,
a collection of SBUs is generated and their geometry optimised using the universal force field
(UFF). [7] After geometry optimisation a dummy/indicator atom (xenon in this case) is added to
the structure to highlight where the connections to linkers should be made. Then the structure
is saved as a chemical markup language (cml) file with geometry information included.
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It is important to also produce a list of file names and their SMILES strings for later
use in constructing the MOFid. However, MOFids require the node to be represented as an
organometallic building block rather than an SBU, which contains part of the organic linker.
The difference between the building block and SBU is shown in Figure 3. Thus a version of the

Figure 3: Comparison of the 3D structure of an SBU and the organometallic building block it
is constructed from. The use of MOFids as a representation of MONs in a VAE requires the

building block / node form.

node.cml representing the base organometallic building block is also provided for the pipeline
and the node_extract_smiles.py script is run to extract the SMILES string associated with
the file.

Finally, node_cml_to_cif.py is run on the collection of SBUs to produce ToBaCCo com-
patible crystallographic information file (cif) files for the nodes. These files specifically include
bonding information that is necessary for ToBaCCo to run.

Organic linker production

Although organic linkers can seem incredibly varied due to their large number of functional
groups, they often share similar or identical carbon backbones, thus a mutative method of
generation is used for large scale production of organic linkers. The process is as follows:

• Common backbones are identified and listed as SMILES strings.

• The desired mutating functional groups are also listed as SMILES strings and are passed
to the mutator script.

• If every permutation of mutation is required for each backbone then
permutative_linker_mutation.py is run (Caution: this can generate extremely large
numbers of molecules if backbones with many mutation sites are used).

• If only select sites require mutation then these positions are highlighted with an indicator
atom (in this case: rubidium) in the SMILES string and selective_linker_mutation.py

is run instead.
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Once a list of mutated SMILES strings has been developed, smiles_to_cml.py is run to produce
3D structures for the SMILES strings using Open Babel. This step also outputs a database of
linker file names and the relevant SMILES string for later use in generating MOFids. The
SMILES string here has the placeholder indicator atom replaced for the full connector (in
this case it is a carbonyl group, but this could in theory be any connecting group). Finally
edge_cml_to_cif.py is run to produce ToBaCCo compatible cif files for the linkers.

Topologically driven MON production

The construction of the MON from the individual building blocks is achieved through the use of
ToBaCCo. The desired topologies are extracted from the database provided with the program
and placed in the working directory. ToBaCCo is designed to take all input edges and generate
every permutation of the edges with the provided nodes. As the number of permutations
can become very large with even a small number of members, limitations are applied on how
many linkers are available to the program for each run. The randomiser.py selects a random
assortment of edges from the main database and moves them into the working directory for
ToBaCCo to use. Using the cif files produced for all nodes and topologies, and the edges
selected in the randomisation, tobacco.py is run to completion. This randomisation process
can then be repeated and ToBaCCo run again until a sufficiently large and varied database has
been constructed.

Unique ID production

A MOFid consists of three main parts: the metal node SMILES string; the organic linker
SMILES strings; and the topology information. [5] ToBaCCo outputs the cif files with unique
names based upon the SBU and linkers used to produce it. This file name is compared with the
two node and edge SMILES databases produced earlier and a MOFid is constructed manually
using this information. Each cif file is then linked to a valid MOFid.

The MOFid program can automatically construct this string from a cif file. However, this
automatic process was found to be unreliable for unoptimised structures. Since optimisation of a
MON can be costly, and ultimately not all MONs will be optimised in this pipeline, these unique
IDs are produced before any optimisation has occurred and hence many fail to automatically
generate valid MOFids.

Structure optimisation and property calculation

It has been shown that it is possible to train a property predictor from latent space using
a smaller subset of labelled training data, [3] and since structure optimisation and property
prediction are costly compared to constructing the MON, not all structures will undergo this
process.

A random subset of the main database is selected and run through Open Babel’s [8,9]

obminimize to optimise the structure using using molecular mechanics with UFF. [7] The res-
ulting structure can then be run through Zeo++ [10] to calculate pore size, which is then added
to the main database.

7.2 An example use of the pipeline

We have constructed a large database of hypothetical, computationally predicted 2D nanosheet
structures based on a set of predetermined building blocks: topographies, secondary building
units (SBUs), and organic linkers. The process for producing the nanosheets is outlined below,
and the code is provided in a git repository.
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• A total of 144 2D topography files were extracted from the full topography database
contained within ToBaCCo. These topologies had been extracted from the Reticular
Chemistry Structure Resource (RCSR). [11] These 144 topographies were chosen such that
the number of different organic linkers in the structure is limited to a maximum of five to
avoid the problem of combinatorial explosion.

• 65 SBUs suitable for the creation of 2D materials were identified from both the 131 units
identified in MOF chemistry by Tranchemontagne et al. [12], and the SBUs provided with
ToBaCCo. These SBUs were created in molecular modelling software and their conversion
into the cif file format was automated.

• Using existing expertise within the Foster group, 10 unique and common organic linker
backbones were identified that can be used in the production of 2D nanosheets.

• Using RDKit and code developed in this project, the selected organic linker backbones
were then mutated with 18 different functional groups in specified positions to produce a
database of 747 varied organic linkers, which were also converted into cif format.

• The first pass of the randomiser selected 10 organic linkers that were passed to ToBaCCo
along with the SBUs and topologies. ToBaCCo was then run, producing 45,329 new
MONs in about 3 hours.

• The resulting MONs then underwent MOFid construction to produce a machine readable
string-based identifier for each structure that will represent the MON in AI algorithms.

Flexibility in terms of future use and development has been a key element in the design of this
data set, and its mostly automated construction. For example, extending the current database
with nanosheets containing any new SBUs discovered, or including additional organic linker
backbones that provide promising experimental results would be straightforward. The current
choices of topology, SBU and linker building blocks were motivated by relatively constrained
mutations of experimentally verified structures, with the aim of constructing nanosheets that
are feasible to synthesise. Greater variation within this mutation process, or extension to 3D
MOF construction, would require only minor modifications to specific parts of the pipeline.

7.3 AI training

The LSTM-VAE used as a generative model was developed using Tensorflow 2.0 [13] with
Keras [14], in Python. To acquire the training dataset for the LSTM-VAE, the MOFid database
generated in the data pipeline is copied and each entry cleaned to remove extraneous data such
as the filename and leaving purely the node-edge-topography sequence. These sequences are
encoded using a dictionary to create a sequence of indexes, then zero padded to fix the length
of the input generating a tensor of shape [batch-size, max-seq-length]. The general structure of
the LSTM-VAE network is shown in Figure 4.

Firstly the sequences are passed through an embedding layer which one-hot encodes the
inputs to generate a 3D tensors of shape [batch-size, max-seq-length, number-of-unique-chars]
ready for the LSTM. This layer also applies a feature mask to the zero-padding. These masked
fixed length sequences are then fed into a bidirectional LSTM layer. The output tensor of an
LSTM contains information about the whole sequence which helps the network learn the string
structure. A bidirectional LSTM improves upon a regular LSTM by training two LSTMs on
the input sequence. The first trains on the input sequence, and the second trains on the reverse
of the input sequence. This can help the network learn more about the context of the input
and can lead to faster and fuller learning.

The output of the LSTM is then encoded into two parameters µx and σx. A decoder LSTM is
trained on sampled points z selected from the latent normal distribution: z = µx + exp(σx) + ε,
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Figure 4: The general structure of the LSTM-VAE showing the flow of the data through the
network. The MOFid is extracted from the database and first passed through an embedding

layer to mask and one hot encode the sequence. The embedded sequence is then passed
through an encoding LSTM and the outputs encoded into the z-space through the two

parameters µx and σx. Outputs from the z-space are decoded using the decoder LSTM and
the results converted back into a readable MOFid.

where ε is a random normal tensor. The parameters of this model are trained by two loss
functions, a reconstruction loss that forces the decoded outputs from the second LSTM to
match the initial inputs and the Kullback-Leibler (KL) divergence between latent distributions
which acts as a regularisation term and helps reduce overfitting to the training data. [15] The
learning rate of the network is also reduced when the loss has not improved for 10 epochs.
Figure 5 shows an example output generated by the network after training for 100 epochs on a
dataset of 10500 points (8500 in the training set, 2000 in the validation set).

Figure 5: An example of the input from the validation set and the output of the trained
network. The test sequence is first encoded into the latent space and then decoded from the
space back into a sequence vector. If the network is successfully trained the reconstructed

sequence should match the initial test sequence, which in this case it clearly does not.

It is clear from this example that the network is not yet usable for generation of new
materials, however the resulting sequence is promising and shows that the model has begun to
learn some of the string structure.

• It has begun to learn the concept of pairs of brackets.

• Most MOFids start with a metal contained within square brackets, from the example we
can see that the sequence correctly starts with “[Zn]”.

• Chains of carbons are common in the organic linkers and are present in the reconstructed
MOFid.
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• The model has correctly placed a carbon ring within the sequence, although the structure
of the ring is incomplete.

• The topography is always found at the end of the sequence and the model has successfully
identified this, yet it fails to correctly form the topography (“qq” vs. “cqi”).

• It correctly zero-pads the outputs (not shown in Figure for clarity).

• Separation of the individual building blocks within the MOFid is yet to be seen.

This output suggests that the input data needs to be a much larger sample, with higher variance
to allow the network to start picking up on lower frequency occurrences of sequences. The
MOFids that are the inputs to this network are dominated by pairs of brackets and carbon,
and with a relatively small dataset the network only learns the common features shared among
all training examples.

These results are reflected in the loss values for the model (shown in Figure 6). Overall loss
values are very high, and those for the validation set are roughly twice those of the training set,
but they have improved over the training cycles. The relatively low training set loss compared
to the validation set suggests overfitting of the model to an extent. One would expect that the
model will be better at predicting the form of these sequences as the loss value is improved.

Figure 6: The loss value over time as the model trains. The loss on the training set (blue)
continues to improve as the validation loss (orange) plateaus, which suggests that the model is

overfitting to the training set. Overall the loss values are very high which shows that the
model still needs improving before it will perform well on not only the training set but also

new data.

8 Outputs

• A new computational 2D nanosheet database that includes the 3D structure and con-
nectivity (in cif format), along with a unique identifier (MOFid). After further refine-
ment, the initial release of this database will be made freely available via ORDA, the
University of Sheffield’s online research data hub, providing an open and citeable dataset
to the community.
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• The software pipeline for construction of the dataset will be made available via GitHub,
for hosted version control.

• The LSTM-VAE generative model will also be made available via GitHub.

• A manuscript on the construction of a database of hypothetical 2D nanosheets is in
preparation.

9 Conclusions

We have successfully developed a software pipeline that allows for fast construction of a dataset
of MONs from their composite building blocks and used this semi-automated approach to
produce a database of more than 45000 hypothetical MONs. Each of these structures has an
associated MOFid that can be used as a representation in ML/AI models, meaning that the
database can be used by other researchers working in this area. The database can be easily
extended by selecting different organic linkers and re-running the last few steps of the workflow
to construct structures and MOFids. It can also be augmented with property information, such
as pore size, depending upon the user’s intended application.

We have also constructed the architecture of an LSTM-VAE AI algorithm that can be
trained on MOFids to generate new outputs. It has been initially trained on a small database
to show that reconstruction is possible, but the progress on the development of this network has
been slower than anticipated. It requires further training and fine-tuning before it is coupled
with property prediction for the structures generated. This work has allowed us to build a
network of collaborators who work well together, even though much of this had to be conducted
remotely, who are eager to continue using AI methods to discover new molecules and materials,
and to then synthesise them. The project has also allowed us to explore each of the main
theoretical phases of automating chemical discovery: generating and curating a suitable dataset
with appropriate representations; building a generative model architecture; training the model
to produce new structures that can then be refined for experimental synthesis. All of the tools
and data produced during the project will be made openly available, both for the continuation
of this work, and for use by the molecular/materials discovery community.

10 Future Plans

Improvements to the performance of the LSTM-VAE in generating MON structures are the
most immediate steps to be taken in future research, which will continue beyond the scope of
this initial project. One route to improvement would be to increase the size and variation of
the training database; the software pipeline developed during this work allows for this data to
be “synthesised” rapidly in a semi-automated fashion and such database extensions should be
easily achievable. Determining how to split structures from the resulting dataset into training
and validation sets in an effective way will require further research, although a number of
well-established techniques from the machine learning field, such as k-fold cross-validation, are
possible candidates. The performance of the generative network will also benefit from further
general hyperparameter tuning, including the layer structures and batch sizes.

The subsequent step in this programme of research will be to label the training data with
property information (pore size). An additional network will then be added on top of the
LSTM-VAE to predict pore size from the latent space, allowing the space to be explored for
materials with desirable properties and then inform and direct experiment toward promising
new structures. Once the generative model begins to predict MOFids not seen in the training or
validation sets, and can generate hypothetical MONs with desired pore sizes, these prediction
will be communicated to the experimental team for synthesis and verification. A longer-term
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vision is to establish this workflow as part of a “closed-loop” approach, where the resulting
experimental data is fed back into the generative model to improve the results.
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12 Data & Software Links

Software/database developed in this work:

• Git repository containing the generative data pipeline and LSTM-VAE architecture

Existing programs/libraries used in this work:

• HDF5 Database

• Keras

• MOFid

• Open Babel

• RDKit

• Tensorflow

• ToBaCCo 3.0

• Zeo++
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