°
Al 4 Scientific 0 Ps D S
Discovery Network*
- PHYSICAL SCIENCES DATA-SCIENCE SERVICE
IMPORT TKINTER _
Skills
4

STICK = SKETCHPAD.CREATE LINE(X,Y-75,X,Y)
ARMS = SKETCHPAD.CREATE LINE(X-25,Y-50,x+25,Y-50)

DIFF_Xx = 25

ROOT = TKINTER.TK()
ROOT.TITLE(

SKETCHPAD = TKINTER.CANVAS(ROOT)

LEGL = SKETCHPAD.CREATE LINE(X,Y,X-DIFF,Y+50)

sc i e ntists LEGR = SKETCHPAD.CREATE LINE(X,Y X+DIFF Y+50)

SKETCHPAD.PACK()

SKETCHPAD.CREATE_ 0VAL(100,50,150,100)
X,y = 125175

-

Producing useful code
(Documentation, Typing, and Code Style in Python 3.5+)

Samuel Munday

This series has been co-created by the Al 4 Scientific Discovery Network & The Physical Sciences Data-Science Service

Reasoning about Code

® What is the author’s intent behind this [line/function/library]?

® Having an answer to this question makes the code easier to use, easier to modify, and ea:
extend

® As scientists, our job is to ‘do science’
® Our software is a tool to help us, but not what we are there for

® This leads to ‘quick and dirty’ code

® Difficult to go back and reason about our own code, let alone somebody else’s!

g N

4
Scientists

22/07/2021 2 \

"The most important single aspect of
software development is to be clear about
what you are trying to build ”

Bjarne Stroustrup (Inventor of C++)

If I don’t understand what your code does, I'm not going to use it
If you don't understand what your code does, you aren’t going to use it
Time you spend doing it now will be vastly outweighed by the time you (and others) save in future!

£\

22/07/2021 ’ \-»

How do we help people reason about our
code?

import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
. Explicit is better than implicit.

. WFl-te—bette-r—eed-e Simple is better than complex.

Complex is better than complicated.
. . Flat is better than nested.

. Write good documentation Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.

. Ma ke Use Of Our Type SYStem Although practicality beats purity.

Errors should never pass silently.

Write With appropriate “Style" Unless explicitly silenced.

. In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right® now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

£\

4
Scientists

22/07/2021 4
-

A WDN =

Example: Lennard-Jones Simulation

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

S Better documentation would help us
return t * np.sqrt(eps/(m*sigma**2)) .
— E::ﬁiidigérjjééﬁqrt(eps/(m"sigma"”‘z)) anSWer these qUeStlons!

f * sigma / eps -

de

-

n_atoms = 24

n_atoms_group = 4

n_groups = n_atoms / n_atoms_group
n_steps = 100

dt = 1E-13

te =@

eps = 1.65E-21

sigma = 3.4E-10

m = 6.63E-26

boxsize= 5

locations = np.zeros((n_atoms, 3))

for group in range(int(n_groups)):
locations[group®n_atoms_group: (group+1)*n_atoms_group, @] = np.arange(n_atoms_group) - np.mean(np.arange(n_atoms_group))
locations[group®n_atoms_group: (group+1)*n_atoms_group, 1] = group - n_groups/2
locations[group®n_atoms_group: (group+1)*n_atoms_group, 2] = group % 2

locations *= 2

all_locations = np.zeros((n_steps, n_atoms, 5))
velocities = np.zeros_like(locations)

velocities += np.random.normal(®, .01, velocities.shape)
accelerations = np.zeros_like(locations)

forces = np.zeros((n_atoms, n_atoms, 3))
times = np.zeros(n_steps) ,’.
Skills
q
Scientists

22/07/2021 5 N

Example: Lennard-Jones Simulation

def

def

def

def

for

getforce(rl, r2):
rsq = np.linalg.norm(ri-r2)
return 4%((1/rsq**6) - (1/rsq**3))

getaccelerations(forces):
return forces.sum(axis=1)

getforces(locations):
for i in range(n_atoms):
for j in range(i+l, n_atoms):

rl = locations[i]
r2 = locations[j]
displacement = rl-r2
forces[i,j] = displacement * getforce(rl, r2)
forces[j,i] = - forces[i,]]

return forces

do_timestep(t, locations, velocities, forces, accelerations):
times[step] = t
locations += (velocities * dt + (1/2) * accelerations * dt**2)
forces = getforces(locations)
new_accelerations = getaccelerations(forces)
velocities += (1/2)*(accelerations + new_accelerations) * dt
accelerations = new_accelerations
for i in range(n_atoms):

if (np.abs(locations[i,:]) > boxsize).any():

velocities[i] = -velocities[i]

return locations, velocities, forces, accelerations

te

step in range(n_steps):

all_locations[step, :, @] = np.arange(n_atoms)
all_locations[step, :, 1:4] = locations

all_locations[step, :, 4] = step

t += dt

22/07/2021

Better documentation would help us
answer these questions!

locations, velocities, forces, accelerations = do_timestep(t, locations, velocities, forces, accelerations) ,’\

Skills
q
Scientists

6 \'

Documentation in Python

def do_timestep(t, locations, velocities, forces, accelerations):

Inline Comments # Velocity verlet: https://en.wikipedia.org/wiki/Verlet_integration#Velocity Verlet

times[step] = t
Update Llocation
locations += (velocities * dt + (1/2) * accelerations * dt**2)

Get new accelerations

* What does this code block do? forces = getforces(locations)

new_accelerations = getaccelerations(forces)

* Uses # to signify comment start # Get new velocities

velocities += (1/2)*(accelerations + new_accelerations) * dt
accelerations = new_accelerations
If an atom has moved too far, pretend it has hit a wall and bounced elastically
for i in range(n_atoms):
if (np.abs(locations[i,:]) > boxsize).any():

velocities[i] = -velocities[i] # Elastic collision

return locations, velocities, forces, accelerations

£\
—‘ Scie:lisls

22/07/2021 7 \

Documentation in Python

Docstrings

* What does this function do?
* Held within 3 sets of quotation marks

def getforce(rl, r2):

Parameters

rl : Location 1 (3d vector)
r2 : Location 2 (3d vector)

Returns

magnitude : Size of force

Given two locations rl and r2, calculate the L] force between them.
L] potential is given by:

4E [(sigma/r)**12 - (sigma/r)**6]
Where r is the magnitude of the displacement vector from rl to r2

We set sigma=r=1 for convenience

We can get r*2 easily - taking square roots is slow so we don't need to
rsq = np.linalg.norm(rl-r2)

magnitude = 4*((1/rsq**6) - (1/rsq**3))

return magnitude

£\

22/07/2021

8 \‘

Accessing Docstrings

getforce()

Signature: getforce(rl, r2)
Docstring:
Parameters
rl : Location 1 (3d vector)
r2 : Location 2 (3d vector)

Returns

magnitude : Size of force

22/07/2021

np.linspace()

Signature:
np.linspace(

start,
stop,
num=50,

endpoint=True,
retstep=False,

dtype=None,
axis=0,

onift

,_Tab help(np.linspace)
Help on function linspace in module numpy:

linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Return evenly spaced numbers over a specified interval.

Returns “num’ evenly spaced samples, calculated over the
interval [“start™, “stop’].

The endpoint of the interval can optionally be excluded.

. versionchanged:: 1.16.@
Non-scalar “start™ and “stop™ are now supported.

Parameters
start : array_like

The starting value of the sequence.
stop : array_like

Thea mad tinTiim mf dhm mmmiimmm—, e Tmmr Y mcdanlas 1o mmde +m T

£\

9 \‘

Typing in Python

Python is strongly?, dynamically? typed
[1] I can only do operations that are explicitly defined on that type
[2] I can change a variable to a different type whenever I want

« We can still use type hints to make our intent clear
— And use a type checker to enforce them

« This makes our code type safe

« Itis still our job to write code that uses the types
correctly. Just because we have added type hints to a
function does not guarantee that it will handle those
types correctly.

def add(a,b):
return a + b

for i, j in [[1, 2], ['Hello", ' World'], [1, 'Hello']]:
print(add(i,j))

3
Hello World

TypeError Traceback (most recent call last)
<ipython-input-200-9c9b5b8b8979> in
2 return a + b
3 for i, j in [[1, 2], ['Hello’, ' World'], [1, 'Hello']]:
---> 4 print(add(i,j))

<ipython-input-200-9c9b5b8b8979> in (a, b)
1 def add(a,b):

---=> 2 return a + b
3 for i, j in [[1, 2], ['Hello', ' World'], [1, 'Hello']]:
4 print(add(i,j))

TypeError: unsupported operand type(s) for +: 'int' and 'str’

4o N

| 4
Scientists
22/07/2021 10 N

A Note on Code Style

* We want our code to /ook like other people’s
— Makes it easier for users to read our code —

- Python’s style guide is described in PEP8 / \
— Be aware that it exists / '
— Use it as a reference |
— Do not drive yourself crazy adhering to it

o
-

« Two word summary: Reaaability Counts

4o N

4
Scientists

22/07/2021 11
-

Summary

» As scientific software developers, we have a duty to make
sure our code is as user-friendly as possible
— Make sure our intent is clear
— Make sure our interfaces are clear

Software Users

« The person who will spend the most time reading
your code is you
— 5 minutes now will save you hours in future Software

You

Developer

£\
—‘ Scieﬁlists

22/07/2021 2 N

Resources

Books

* The Pragmatic Programmer (Hunt, Thomas)

* Python for Data Analysis (McKinney)

* Data Science from Scratch (Grus)

* The Hitchhiker’s Guide to Python (Reitz, Schlusser)

Software Tools

* Mypy (Python Type Checker)
* Flake8 (Python Style Linter)

£\

| 4
Scientists
22/07/2021 13

Skills4Scientists!

22/07/2021

