
Producing useful code
(Documentation, Typing, and Code Style in Python 3.5+)

Samuel Munday

This series has been co-created by the AI 4 Scientific Discovery Network & The Physical Sciences Data-Science Service

AI 4 Scientific 
Discovery Network+



22/07/2021 2

Reasoning about Code
• What is the author’s intent behind this [line/function/library]?

• Having an answer to this question makes the code easier to use, easier to modify, and easier to 
extend

• As scientists, our job is to ‘do science’

• Our software is a tool to help us, but not what we are there for

• This leads to ‘quick and dirty’ code

• Difficult to go back and reason about our own code, let alone somebody else’s!



22/07/2021 3

“ The most important single aspect of 
software development is to be clear about 

what you are trying to build ”

Bjarne Stroustrup (Inventor of C++)

• If I don’t understand what your code does, I’m not going to use it
• If you don’t understand what your code does, you aren’t going to use it
• Time you spend doing it now will be vastly outweighed by the time you (and others) save in future!



22/07/2021 4

How do we help people reason about our 
code?

1. Write better code
2. Write good documentation
3. Make use of our Type System
4. Write with appropriate “style”



22/07/2021 5

Example: Lennard-Jones Simulation

Better documentation would help us 
answer these questions!



22/07/2021 6

Example: Lennard-Jones Simulation
Better documentation would help us 
answer these questions!



22/07/2021 7

Documentation in Python
Inline Comments

• What does this code block do?
• Uses # to signify comment start



22/07/2021 8

Documentation in Python

Docstrings

• What does this function do?
• Held within 3 sets of quotation marks



22/07/2021 9

Accessing Docstrings

Shift + Tab



22/07/2021 10

Typing in Python
• Python is strongly1, dynamically2 typed

[1] I can only do operations that are explicitly defined on that type
[2] I can change a variable to a different type whenever I want

• We can still use type hints to make our intent clear
– And use a type checker to enforce them

• This makes our code type safe

• It is still our job to write code that uses the types 
correctly. Just because we have added type hints to a 
function does not guarantee that it will handle those 
types correctly.



22/07/2021 11

A Note on Code Style

• We want our code to look like other people’s
– Makes it easier for users to read our code

• Python’s style guide is described in PEP8
– Be aware that it exists
– Use it as a reference
– Do not drive yourself crazy adhering to it

• Two word summary: Readability Counts

Tabs or spaces?

Naming 
Conventions

Docstring
Style



22/07/2021 12

Summary
• As scientific software developers, we have a duty to make 

sure our code is as user-friendly as possible
– Make sure our intent is clear
– Make sure our interfaces are clear

• The person who will spend the most time reading
your code is you
– 5 minutes now will save you hours in future

Software Users

Software 
Developer

s

You



22/07/2021 13

Resources
Books
• The Pragmatic Programmer (Hunt, Thomas)
• Python for Data Analysis (McKinney)
• Data Science from Scratch (Grus)
• The Hitchhiker’s Guide to Python (Reitz, Schlusser) 

Software Tools
• Mypy (Python Type Checker)
• Flake8 (Python Style Linter)



22/07/2021 14

Skills4Scientists!


