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3. Lay Summary 
Incorporating artificially intelligent optimisation algorithms into chemistry experiments can 
allow scientists to reduce the number of man-hours and materials used, by enabling the 
smart selection of which experiments to run in order to more efficiently reach experiment 
outcomes. This has been combined with continuous-flow reactor technology, which has 

great potential to automate scientific discovery. There is also the potential to obtain 
understanding for more efficient scale-up towards industry, where small materials savings 
have large economics of scale. In this project, AI optimisation was used to determine the 
benefits of continuous over discrete variable optimisation of the ratio of gold and silver 
content in nanoparticles used as catalysts in continuous-flow chemical synthesis. 
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4. Aims, Objectives, and Introduction 
 

Aims and Objectives: 
 

The aim of this project is to provide evidence that continuous-variable optimisation using a 
previously devised continuous-optimisation algorithm, is more efficient at reaching a global 
optimum than discrete optimisation, which is exemplified using a novel discrete Bayesian 
optimisation algorithm.  
The subject for this investigation was optimising the ratio of gold:silver in a solution of 
catalytic colloidal nanoparticles, alongside concentration of reducing agent (NaBH3) and 
residence time, with the aim of maximising conversion of nitrophenol to phenylamine in an 
example reaction in continuous flow. Previous attempts at optimisation of the Au:Ag ratio 
were done continuously with much success.  

This project aims to confirm the benefits of continuous optimisation over discrete 
optimisation, by using a mixed continuous & discrete Bayesian optimisation algorithm and 
comparing the results. As a secondary goal, the number of discrete levels explored by the 
algorithm would be varied, implementing linearly as well as exponentially spaced discrete 
levels. A tertiary goal would be to investigate the differences in exploration of experimental 
space between experiments with varied numbers of discrete levels, and compare between 
them and the former successful continuous approach.  
 

Introduction:        
 
The application of the ideas resulting from such an investigation fits into a more general 
problem in both scientific discovery and industry, namely that of cost. The implications of 
reducing process cost at the large scale of chemical industry are obvious, while the impact 
on research is less so.  

Superficially, scientific research and discovery may seem less concerned with economics, 
however the ability of university research groups and research institutes to fund their 
research is often greatly impacted by cost/benefit analysis. Research that has clearer 
economic potential in industry is far more likely to receive a steady supply of funding than 
theoretical research with less clear commercial application. This is a problem that deserves 
attention, since it is not always obvious what early-stage, fundamental discoveries can lead 
to world-changing technologies in the future.  
 
An answer to this problem involves expediting scientific discovery using technology to 

reduce the costs associated with scientific research. This involves looking at the 
fundamentals of science, the scientific process (i.e., how experiments are performed and 
how science is actually conducted), and of the role of the scientist; all of which is the 
subject of metascience. 
Optimisation through machine-learning tips the balance and alters the role of the scientist 
away from the steering wheel in low-level experimental design towards higher level 
automation systems, simultaneously reducing human input, material cost and environmental 
impact of both experimentation and scaled-up chemical process. 
 

The scientific method relies upon the principal of the dependant and independent variable 
(also called the “response variable”) to prove or disprove hypotheses. By holding steady the 
other variables affecting the conditions of a system, the dependent variables, in such a way 
that changing one variable, the independent variable, will provide insight to the dependence 
of the system’s conditions on that independent variable. This provides the basis of 
experimentation, and refines what could be a chaotic mess of trial and error into a 
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systematic protocol aimed at isolating causes from effects in the pursuit of validity, 
reliability, and replicability of results.  
 
The role of the scientist is to decide the independent variable in line with their hypothesis, 
isolate the system from the dependent variables that influence it, and finally to decide the 

area of experimental space they wish to explore with their experiment. Experimental space 
is rather like a sample space in statistics. A sample space is the set of all possible outcomes 
of a scenario, much like experimental space is the set of all possible results within a single 
experimental design space, which has been designed in line with the earlier described 
principals. Optimising the exploration efficiency of experimental space has already been a 
topic in scientific discourse for decades [1][2], termed “design of experiments” or “DOE”.  
 
DOE involves establishment of a response surface, which enables a graphical representation 
of the dependence of the system on multiple response variables. A DOE visualisation across 

experimental space demonstrates the difficulties associated with chemical system 
optimisation, and why there exists no single method to optimise a set of experiments in 
chemistry [6].  
 
Traditionally, in multivariable systems an analogue “one variable at a time” (OVAT), 
approach would be used to optimise a chemical system. This is extremely time consuming, 
and involves a trade-off between the amount of experimental space explored and the 
number of experiments that are to be performed, i.e., where researchers must decide where 
to allocate their limited time and access to resources. 

This approach also rarely leads to the discovery of the most optimum reaction conditions in 
a chemical system, as shown in figure 1. 
 

 
Figure 1: A response surface that exemplifies how an OVAT approach to multivariable optimisation easily misses the true 
global optimum, where crosses indicate individual experiments in a chosen DOE. A higher yield in a prior experiment at 
lower concentration changes the point of focus such that the area of experimental space containing the true global 
optimum would be missed on subsequent experiments at higher concentration. 

 
Optimisation of a multivariable chemical system may involve a trade-off between one 
variable and another, meaning that a single solution that simultaneously optimises every 
variable may not exist. This is where the objective functions of the variables are said to 

conflict. In this case, one variable cannot be improved without worsening another, which 
results in what is known as a “Pareto front” of “non-dominated” solutions [3]. 
 
 



 
 

 
 

4 

 
 
 

 
Since there are potentially an infinite number of solutions along the Pareto front, the 
scientist must decide on a solution that aligns with the aims of their experimentation. For 
example, many synthetic chemical experiments in research aim to increase yield or 

conversion of a starting material. This could be at the expense of residence time in a 
continuous flow reactor; an effect which could be amplified at industrial scale determining 
rate of production in a chemical plant. This was shown in 2013, where Ganesan et al. 
performed a multi-objective optimisation of carbon dioxide reforming and partial oxidation of 
methane, simultaneously optimising methane conversion, carbon monoxide selectivity and 
hydrogen to carbon monoxide ratio [4]. 
 
Optimisation through machine learning uses the data produced through experiment as 
training data for a machine learning algorithm, which is used on the fly to generate a 

surrogate model of the system. A surrogate model can be thought of as the bridge between 
the algorithm’s view of the chaotic, noisy, real-life chemical system, the “objective function”, 
and the set of experimental results arising from that system. It is a simplified version of the 
real-life system required to perform the statistical calculations necessary within an 
optimisation algorithm. This enables the minimisation of the objective function along the 
Pareto front through iterated improvement of the surrogate model in Bayesian optimisation.  
 
The surrogate model is a Gaussian process where the distribution of possible results is dealt 
with as an infinite array of Gaussian functions, represented by a mean and covariance 

function. This is used in combination with an acquisition function to automate the process of 
experiment selection, which is tuned using hyperparameters that determine the balance 
between the tendency of the acquisition function to explore new experimental space (and 
avoid getting stuck in local optima) vs. minimising the number of iterations it takes to reach 
a global optimum (a common measure of optimisation algorithm efficiency). 
 
Bayesian optimisation updates the surrogate model of the objective function on each 
iteration after each experiment, using the new data to inform the selection of the next 

Figure 2: A Pareto front of non-dominated solutions from performance criteria A & B, bordered by dominated solutions 
in a feasible region, and an infeasible region. This is the border between where one criterion’s objective function cannot 
be minimised further without raising the other, and infeasibility.  
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experiment, with the ultimate aim of minimising the objective function to reach a global 
optimum. This is done by producing a surrogate model where the distribution is closer to 
that of the true objective function, where variance (representing uncertainty) will be greater 
further away from the training data.  
It is termed “Bayesian” because priors (the previous surrogate model) are updated on the 

input of new data, to produce the updated surrogate model. The algorithm will run either 
until a certain optimum or iteration limit is reached, either in a simulation or a set 
reasonable number of experiments in real life. 
  
 

5. Methodology 
 
In this project the response variable is conversion percentage of nitrophenol to 
phenylamine, measured using on-line UV-Vis spectrometry. The 3 dependent variables are: 
the continuous residence time of the reaction mixture in the reactor system; discrete levels 
of the Au:Ag composition ratio of the alloyed nanoparticle catalyst; and the continuous ratio 
of nanoparticle catalyst:reducing agent, NaBH3. This is termed “mixed variable multi-

objective optimisation” or “MVMOO”, where optimisation is performed between multiple 
variables of differing type.[5] 

 
The Bayesian MVMOO algorithm used in this project was created by Jamie Manson using 
MATLAB [5], and utilised a surrogate model generated from a sample of training data 
stemming from a previous continuous-flow reactor system built by Brendon Hall. He used 
SNOBFIT (another optimisation algorithm) with real-life experiments in the reactor to 
optimise the continuous ratio of gold:silver in alloyed nanoparticles produced using the 
Turkevitch protocol[7]. B. Hall chose to explore a resolution of 1% Au:Ag above that granted 

by the minimum pump steps in his continuous flow system, which was theoretically 0.005%. 
 
 

 
Figure 3: Self-optimising continuous-flow reactor schematic [6] 
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Table 1: Reactor data from the continuous optimisation of Au:Ag in a self-optimising continuous-flow reactor [6]  

 

Au:Ag ratio 
AuAgNP:NaBH4 

ratio 
Residence time 

(min) 
Conversion 

(%) 
0.814724 0.228864 0.922886 43.0696 
0.031833 0.152442 1.443623 24.286 

0 0.25 0.53 27.9091 
0.93 0.24 1.5 39.2271 
0.3 0.15 0.98 20.5675 
0.52 0.16 0.55 28.1981 
0.96 0.17 0.52 38.7054 
0.5 0.23 1.46 30.1455 
0 0.27 0.98 28.434 

0.54 0.11 1.17 29.4197 
1 0.3 0.5 48.2176 
1 0.29 0.96 57.0241 

0.23 0.23 1.22 22.9256 
1 0.3 1.1 60.2201 
1 0.3 1 53.5624 

0.62 0.2 1.07 37.5694 
1 0.28 1.5 56.5323 
1 0.21 1.17 42.626 

0.23 0.13 1.22 24.4031 
1 0.27 1.2 56.7796 
1 0.2 0.89 39.0458 

0.12 0.27 1.36 24.9779 
1 0.21 0.7 42.1776 

0.981472 0.196852 1.249751 26.66667 
0.982582 0.141601 1.991816 49.5 

0.93 0.08 0.71 19.91667 
0.94 0.03 1.62 17.91667 
0.91 0.04 1 15.16667 
0.99 0.28 1.75 60.25 

0.91 0.3 0.89 29.75 
0.95 0.3 1.48 52.66667 
0.92 0.01 1.38 13.33333 
0.93 0.02 1.83 19.58333 

1 0.01 0.89 10.33333 
1 0.3 2 54.91667 

0.94 0.16 1.44 36.41667 
0.99 0.01 1.85 15.41667 

1 0.3 1.76 52 

0.93 0.27 1.23 37.83333 
0.97 0.3 1.5 64 
0.96 0.3 1.87 62.33333 
0.92 0.2 1.21 31.66667 
0.96 0.3 1.21 51.75 
0.96 0.27 1.7 59.91667 

0.96 0.25 0.79 44.41667 
0.98 0.3 1.79 64.25 
0.97 0.16 1.44 46.08333 



 
 

 
 

7 

0.98 0.3 2 66.41667 
0.96 0.15 1.82 46.58333 
0.96 0.08 1.16 27.08333 
0.97 0.3 1.99 66.58333 

0.98 0.22 1.79 55.58333 
0.99 0.2 1.53 45.66667 

0.98456 0.030362 1.7153 23.0989 
0.92958 0.23741 1.0063 34.1548 
0.94606 0.26613 1.4542 49.9892 
0.96447 0.18421 0.72304 41.7431 
0.99377 0.10759 1.155 29.4664 
0.9079 0.16003 1.3273 29.45 
0.9242 0.059235 1.891 21.4767 
0.99324 0.3 1.9133 58.0437 
0.93738 0.3 1.7192 49.142 
0.97086 0.3 2 72.9477 

0.97178 0.3 0.80842 56.0847 
0.96561 0.3 2 71.9256 
0.97164 0.26905 2 68.9019 

0.97227 0.3 2 71.9945 
0.96985 0.29998 2 72.6214 

 
 
 

  
 
Brendon received a surprising optimum conversion percentage with 97% gold nanoparticles. 
This demonstrated the power of continuous optimisation since the resolution of most OVAT 
approaches would prohibit access to the experimental space containing the global optimum 
without inordinate effort and cost. 

Figure 4: B. Hall's continuously optimised data from real-life experiment on the cont. flow 
reactor [6] 
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The Bayesian MVMOO algorithm used in this project was set with varying numbers of 
allowed discrete levels for the AuAg ratio of the nanoparticles, essentially minicking the 
experiment in which batches of nanoparticle catalysts were prepared and made available for 
testing, e.g. from wells in an autosampler. The experiments were run in silico and run for 50 
iterations for 5 times per setting. The bounds of the simulation were set to the same as 

those used by Brendon in his reactor. This was done with the prior knowledge of the 
response surface and global optimum found by Brendon, therefore with the objective of 
ascertaining the difficulty of finding that same optimum through discretely varying the Au:Ag 
ratio. 
A limitation of this approach was that the program in MATLAB could not handle an infinite 
number of discrete levels, since this exponentially increased the computational workload of 
the system. It was found that beyond 20 discrete levels, the algorithm would still produce 
results, but with very few algorithm solver runs returning positive exit flags, indicating that 
the results obtained were unreliable. Past 50 discrete levels, the program would break down, 

crash the computer, and could not produce meaningful results. 
 
The number of discrete levels were varied between 5, 11, 15 and 20 levels.  
This was split into 2 methods:  
 

Method 1: N discrete linearly spaced levels between 0 and 1  
Method 2: N Linearly spaced values of x between 0 and 2.3 were substituted into 
equation 1 to produced N exponentially spaced levels. (e.g. 5 linearly spaced values 
between 0 and 2.3 plugged into eqn. 1 produced the levels).  

 
 𝒚(𝒙) =  −𝟏𝟎−𝒙 + 𝟏       (Equation 1)   

 

 

Figure 5: Graph of function shown in equation 1 used to produce exponentially spaced 
discrete levels, chosen between x = 0 and 2.3, to receive y(x) = 0.005 
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The aim of this approach was to scan the experimental space accessed by the simulation 
with method 1, increasing from 5 up to 20 discrete levels. Method 2 was an extension 
designed to explore the effect of tuned exponential increase in the percentage of gold in the 

nanoparticles, between 0% and 99.5% gold. This was achieved with a script that populated 
an array with varied numbers of discrete values for the levels with linearly spaced 
substitutions of x along the function. 
 
The justification for narrowing the experimental space explored in this way was two-fold: 
since the system had previously been found to be more heavily reliant on the presence of 
gold in the nanoparticles, it made sense to produce a system that skewed its focus of 
exploration towards the higher ratios of gold:silver.  
Another reason was more general, since there are many situations in chemical systems 

where more = better. In chemical kinetics, reaction rate is proportional to concentration, 
and there exist many catalytic systems in which higher amounts of catalyst will result in a 
faster reaction. This means such an approach of tuned exponentially increasing discrete 
levels could show application in future experimental design if it turns out to be more 
efficient at exploring experimental space in this higher region. 
 
Finally, as another extension to the project, the exploration of experimental space was 
investigated using a custom-built script based on ideas from Luke Power of an exploration-
factor. This value was calculated based on the average shortest distance of each explored 

point in experimental space from every other point, over the total experimental space 
explored: 
 

𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓, 𝑬 =  
∑ 𝒔𝒉𝒐𝒓𝒕𝒆𝒔𝒕 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝑨𝒓𝒆𝒂 𝒆𝒙𝒑𝒍𝒐𝒓𝒆𝒅
     (Equation 2) 

  
 
A higher average distance equals a higher average exploration across the space. 
 
The results from the simulated experiments were plotted on a 3D graph, with colour in 
MATLAB to compare the maximum conversion percentage achieved on each run. 
Cumulative conversion percentage was also plotted as a measure of optimisation efficiency, 
to determine how quickly (i.e. after how many experiments) the optimisation achieved the 
optimum. 
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Figure 7: Response surface resulting from optimisation involving 11 linearly spaced levels of 
Au:Ag ratio in a nanoparticle catalyst. 

6. Results 
 

N Linearly spaced levels: 
 
5 levels of Au:Ag Ratio 
 

 
11 levels of Au:Ag Ratio 

 

Figure 6: Response surface resulting from optimisation involving 5 linearly spaced levels of 
Au:Ag ratio in a nanoparticle catalyst. 
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15 levels of Au:Ag Ratio 

 

 
21 levels of Au:Ag Ratio 

 
 
 
 

Figure 8: Response surface resulting from optimisation involving 15 linearly spaced levels of 
Au:Ag ratio in a nanoparticle catalyst. 

Figure 9: Response surface resulting from optimisation involving 21 linearly spaced levels 
of Au:Ag ratio in a nanoparticle catalyst. 
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N exponentially spaced levels (see equation 1): 
 

 
5 levels of Au:Ag Ratio 

 
 
 

11 levels of Au:Ag Ratio  

Figure 10: Response surface resulting from optimisation involving 5 exponentially spaced levels 
of Au:Ag ratio in a nanoparticle catalyst. 

Figure 11: Response surface resulting from optimisation involving 11 exponentially spaced 
levels of Au:Ag ratio in a nanoparticle catalyst. 
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15 levels of Au:Ag Ratio  

 

 
 

19 levels of Au:Ag Ratio 

 

Figure 12: Response surface resulting from optimisation involving 15 exponentially spaced 
levels of Au:Ag ratio in a nanoparticle catalyst. 

Figure 13: Response surface resulting from optimisation involving 19 exponentially spaced levels of 
Au:Ag ratio in a nanoparticle catalyst. 
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Table 2: Maximum conversion % per experiment 

Experiment 
Max. conversion 
(%) 

B. Hall 72.9 

Linearly Spaced (levels)  
5 67.6 

11 67.6 

15 67.6 

21 67.6 

Exponentially spaced 
(levels)  
5 67.4 

11 67.4 

15 67.4 

19 67.4 

 

 
 
Cumulative Conversion Percentage: 
 
 

 
 

Figure 14: Cumulative conversion achieved by B. Hall in real-life continuous optimisation with the 
cont. flow reactor [6] 
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Figure 15: Cumulative conversion comparison (linearly spaced levels) 

Figure 16: Cumulative conversion comparison (exponentially spaced levels) 
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Figure 15: Cumulative conversion comparison (5 linear vs. 5 exponentially spaced) 

Figure 1816: Cumulative conversion comparison (15 linear vs. 15 exponential) 
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Exploration factor: 
 

 

Experiment Exploration Factor 

B. Hall 2700 

5 linear levels 3323 

11 linear levels 3137 

15 linear levels 3633 

19 linear levels 3588 

5 exponential levels 3387 

11 exponential levels 3522 

15 exponential levels 3406 

19 exponential levels 3447 

 
 
This project returned mixed results. The first issue was that the discrete optimisation 
algorithm simulated experiments never achieved as high a conversion percentage as the 
continuous optimisation received by B. Hall. This provides evidence that the discrete 
algorithm was unable to access the necessary resolution in experimental space to find the 

true global optimum achieved in the continuous optimisation by B. Hall. Surprisingly, 
however, while the true optimum was never found, the optimum reached (~5% lower) was 
reached after significantly fewer experiments, shown by the cumulative conversion. 
  
B. Hall took 65 experiments to reach the global optimum, in comparison to between 5 and 
30 experiments with linearly spaced levels, and between 8 and 32 experiments for 
exponentially spaced levels. 
 
While increasing the number of discrete levels in this system did not change the ultimate 

optimum produced, it did decrease the efficiency of the algorithm proportionally with the 
increased number of levels, such that the optimum took more experiments to achieve. This 
could be attributed to inaccurate tuning of the acquisition function leading to conservative 
exploration among the allowed discrete levels.  
 
The exploration factor for the discrete optimisations were all slightly higher than the 
continuous by B. Hall, but this data is difficult to interpret considering the true optimum was 
missed. Further experimentation with this exploration factor would be necessary to 
determine real life effect of small differences in the factor between optimisations of differing 

types. 
 
 
 
 
 
 
 
 

 

Table 3: Exploration factor calculated using the approach described by L. Power, of dividing the total 
distances between every point produced in each optimisation by the volume of experimental space (link 
to code in output). 
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7. Conclusions & Future Work 
 
Conclusions: 
 

In a real-life system, these results would point towards better efficiency in terms of time and 
consumption of resources using the discrete approach, at the expense of an inaccurate 
global optimum reached. However, this can be attributed to the fact the system was not 
allowed to access the experimental space of the global optimum reach by B. Hall. This could 
be remedied by specifically setting the system to be able to access this space but would 
defeat the aims of the experiment of reducing the prior system knowledge requirement, 
which highlights the issues with the discrete approach. 
 
As expected, the exponentially spaced levels achieved the optimum with fewer experiments 

than linear spaced, providing evidence that exponentially spaced levels in discrete 
optimisation are more efficient at producing the optimum in a “more equals better” system. 
However, this also requires prior knowledge, either from experiment or modelling, that it is 
indeed that kind of system. Using exponentially spaced levels in this system did not change 
the optimum reached, which was unexpected since doing so was supposed to circumvent 
the need for increased resolution specifically in this type of system; this should be 
investigated further in the future. 
 
The exploration factor used in this project provides an insight into the amount of 

experimental space explored in a system, and a criticism is that it seems to only be 
comparable between similar systems due to the range of data, as well as the number of 
experimental data points. All the discrete optimisations showed greater exploration across 
the whole data set; despite this, the true optimum by B. Hall was unable to be achieved. 
This provides evidence that increased exploration alone is unable to make up for the 
reduced resolution in experimental space that discrete optimisation is restricted to. 
 
This project does not provide definitive evidence that continuous variable optimisation is 
better than discrete. Discrete optimisation showed efficiency benefits over continuous, with 

the sacrifice of accuracy. 
Due to the intense computational workload necessary for Bayesian optimisation, the higher 
numbers of discrete levels investigated beyond the results presented in this work were 
omitted due to concerns about validity. This shows that the discrete optimisation algorithm 
could be tuned to work more efficiently with higher numbers of discrete levels, perhaps 
utilising a more powerful computer than a home or office laptop. 
 
 
Future work: 

 
The results from this project point towards the need for refinement in the continuous 
optimisation system used in the continuous flow reactor by B. Hall. The approach used in 
this project could also be extended by zooming in on the higher end of the Au:Ag ratio, 
which due to technical issues with the optimiser, was unable to be achieved. 
Results from this work would also point towards efficiency advantages in terms of time and 
resources of using discrete variable optimisation over continuous, but limitations in finding 
the ‘true optima’ of the system, at least in reaction systems like the ones used in this 
project. 

Further work must also be done to test the validity of the exploration factor, and its ability 
to compare optimisations of different types. 
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8. Outputs, Data & Software Links 
 
(Link to GitHub for exploration factor code: 
https://github.com/louisgreenhalgh/matlabExplorationFactor.git) 

 
(Link to poster presented at the Ai3SD Summer symposium 2021: 
https://www.ai3sd.org/wp-content/uploads/sites/374/2021/08/11_Louis_Greenhalgh.pdf) 
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